Plane engine parts’ 3D production has been among the most important aviation projects. Naval Air Systems Command(NavAir) took another important step on that matter by manufacturing engine room casing and connecting piece.
It’s one small part for an aircraft engine, one giant leap for 3D printing. The Navy has announced a Marine MV-22 made the sea services’ first successful flight with a “flight critical” component built by additive manufacturing.
Specifically, in the test at Patuxent River Naval Air Station, the Osprey’s engine nacelle contained a 3D printed titanium link, small enough to hold in one hand, that helps hold the engine onto the wing.So this wasn’t the usual low-risk, low-hanging fruit for additive manufacturing: a plastic bracket to hang things from, a disposable syringe, a mock-up or model — the kind of things produced by the first 3D printer installed on a Navy warship. Instead, it was something so essential that if it broke, the engine might start coming off.
But strength is non-negotiable for engine parts. That’s especially true in aviation, where components come under a lot of stress — heat, pressure, vibration — and a breakdown can kill people. So, precisely because the stakes are so high in aviation, safety standards are high as well, and the certification process is laborious. Rest assured there was plenty of analysis and ground testing before an aircraft with a 3D-printed part installed — and a human pilot at risk — was ever allowed to take off.